Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo
نویسندگان
چکیده
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor prognosis and limited therapeutic options. The incidence of IPF increases with age, and ageing-related mechanisms such as cellular senescence have been proposed as pathogenic drivers. The lung alveolar epithelium represents a major site of tissue injury in IPF and senescence of this cell population is probably detrimental to lung repair. However, the potential pathomechanisms of alveolar epithelial cell senescence and the impact of senolytic drugs on senescent lung cells and fibrosis remain unknown. Here we demonstrate that lung epithelial cells exhibit increased P16 and P21 expression as well as senescence-associated β-galactosidase activity in experimental and human lung fibrosis tissue and primary cells.Primary fibrotic mouse alveolar epithelial type (AT)II cells secreted increased amounts of senescence-associated secretory phenotype (SASP) factors in vitro, as analysed using quantitative PCR, mass spectrometry and ELISA. Importantly, pharmacological clearance of senescent cells by induction of apoptosis in fibrotic ATII cells or ex vivo three-dimensional lung tissue cultures reduced SASP factors and extracellular matrix markers, while increasing alveolar epithelial markers.These data indicate that alveolar epithelial cell senescence contributes to lung fibrosis development and that senolytic drugs may be a viable therapeutic option for IPF.
منابع مشابه
Effect of thalidomide on the alveolar epithelial cells in the lung fibrosis induced by bleomycin in mice
Introduction: Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. In the adults type I and II pneumocytes, forms Components of the alveolar epithelial cells. In this study, we investigated the effect of thalidomide on the alveolar epithelial cells (type I and II pneumocytes) in ...
متن کاملInduction of CDK inhibitor p21 gene as a new therapeutic strategy against pulmonary fibrosis.
Alveolar epithelial cells are known to be present at the primary site of lung damage in pulmonary fibrosis. Apoptosis has been implicated as being involved in epithelial cell damage and pulmonary fibrosis. Because the cyclin-dependent kinase inhibitor p21 induces G1 arrest and DNA repair and because it also prevents apoptosis in some cells, we hypothesized that p21 gene transfer may attenuate b...
متن کاملClub cells inhibit alveolar epithelial wound repair via TRAIL-dependent apoptosis.
Club cells (Clara cells) participate in bronchiolar wound repair and regeneration. Located in the bronchioles, they become activated during alveolar injury in idiopathic pulmonary fibrosis (IPF) and migrate into the affected alveoli, a process called alveolar bronchiolisation. The purpose of this migration and the role of club cells in alveolar wound repair is controversial. This study was unde...
متن کاملINTERSTITIAL LUNG DISEASE In vivo IL-10 gene delivery attenuates bleomycin induced pulmonary fibrosis by inhibiting the production and activation of TGF-b in the lung
Backgroud: Idiopathic pulmonary fibrosis is a devastating disorder for which there is no effective treatment. Transforming growth factor (TGF)-b plays a critical role in provoking fibrosis. Interleukin (IL)-10 is a potent immunosuppressive cytokine but its effect on the fibrosing process is unclear. A study was undertaken to examine whether IL-10 affects the production and activation of TGF-b a...
متن کاملMacrophage-expressed IFN-β Contributes to Apoptotic Alveolar Epithelial Cell Injury in Severe Influenza Virus Pneumonia
Influenza viruses (IV) cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs) has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM)-expressed IFN-β significantly contr...
متن کامل